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This paper deals with the calculation of the convective heat transfer rate to the 
end-wall of a shock tube from a monatomic gas heated by a reflected shock. We 
consider a range of shock strengths for which the equilibrium thermodynamic 
state is one of appreciable ionization. The resulting boundary-layer problem 
involves the thermal conductivity and ambipolar diffusion coefficient for a 
partially ionized monatomic gas. The formulation here is restricted to the case 
of a catalytic wall and equal temperatures for all species. We ignore the effect of 
the plasma sheath at the wall. Consideration is given to three limiting cases for 
which similarity-type solutions of the boundary-layer equations may be found : 
(1)  complete thermodynamic equilibrium behind the reflected shock and within 
the boundary layer; (2) equilibrium behind the reflected shock, but no gas-phase 
recombination in the boundary layer; (3) no ionization in either region. 
Numerical calculations are carried out for argon using estimated values of 
thermal conductivity and ambipolar diffusion, and compared with shock-tube 
experiments of Camac & Feinberg (1965). For no ionization, calculations were 
made with thermal conductivity varying as the 2 power of the temperature, 
which fits the estimates of Amdur & Mason (1958) up to 15,000 OK. Excellent 
agreement with experiment is obtained confirming an extrapolation of this 
power law up to 75,000 OK. For ionized cases, based on estimates of Fay (1964), 
the theory predicts heating rates 20-40 % lower than measured values. Some 
possible reasons for this discrepancy are discussed. 

1. Introduction 
The shock tube has been developed into a reliable apparatus for the production 

and study of high-temperature gases and plasmas. One frequently used experi- 
ment is the study of the gas left behind when the reflected shock wave recedes 
from the end of the shock tube. This gas is approximately uniform and quiescent, 
the only non-uniformities and motions being caused by ‘viscous’ effects, i.e. 
effects caused by the presence of cold walls surrounding the hot gas. Its equi- 
librium thermodynamic state is predictable from observations of the speeds of 
the incident and reflected shocks.t It is easily studied through the walls without 

7 The work of Camac & Teare (1964) indicates that for chemically reacting gases, the 
non-equilibrium thermodynamic state is not so easy to predict. 
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disturbing the bulk of the gas sample. Therefore, the method is conducive to 
determining the properties of gases, provided these properties can be related to 
observations made at the wall. 

In  this report we will relate the thermodynamic and transport properties of an 
ionized monatomic gas to the heat transfer measured a t  the end wall of the shock 
tube, provided only that the gas in the boundary layer is either frozen or at 
equilibrium. In other words, we will formulate and solve (for the case of argon) 
the boundary-layer heat-transfer problem for such a gas in the geometry in 
which a semi-infinite hot gas sample is suddenly put in contact with a plane, 
infinite, cold wall. This may be called the thermal Rayleigh problem, in analogy 
with the viscous Rayleigh problem in which a semi-infinite fluid is suddenly put 
in contact with a plane, infinite wall moving parallel to itself. 

The geometry studied here has been previously utilized for studying thermal 
conductivity in unionized argon by Smiley (1957) and Lauver (1964), and in 
dissociated air by Hansen, Early, Alzofon & Wittenborn (1959), Peng & Ahyte 
(1961) and Thomson (1960). The upper temperature limit of Smiley's work was 
3000'K and that of Lauver 9000°K. The formulations of Hansen et al. and 
Peng & Ahyte were incorrect because they ignored the convection toward 'the 
wall induced by the cooling of the gas at the wall. Thomson pointed out and 
corrected this error. Theoretical calculations applicable to unionized argon in 
the present geometry have been made by Edwards & Tellep (1961) and by Jepson 
(1961) in their studies of flow at zero Prandtl number of fluids with power law 
thermal properties. In  the present study a remarkably accurate approximate 
formula due to Jepson is used to calculate the unionized heat-transfer. 

The present study was motivated by experiments of Camac & Feinberg (1965), 
where heat transfer was measured from unionized argon up to 75,000°K, and 
also from argon up to 45 yo ionized. The theory and calculations reported here 
were performed to make it possible to compare the predicted heat-transfer rates 
based on present knowledge of the transport properties of argon with experi- 
mental observations. 

In the succeeding sections we give the boundary-layer equations, the thermo- 
dynamic and transport properties, and the mathematical transformation used 
to make the calculations. Then we discuss the results compared to experi- 
mentally measured heat-transfer rates. 

2. Boundary-layer equations 
A simple boundary layer is envisaged, in which all species are taken to have 

the same temperature T. Only three cases are considered: (1) a perfect unionized 
monatomic gas; (2) an ionized gas in thermal equilibrium; (3) an ionized gas with 
an equilibrium free stream and a frozen (no gas-phase recombination) boundary 
layer. All these cases permit similarity solutions of the boundary-layer 
equations. 

We imagine the cold end-wall of the shock tube suddenly put into contact at  
t = 0 with the quiescent hot gas. We assume the gas and the wall to be semi- 
infinite in extent so there is no flow parallel to the wall and no change in that 
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direction. All flow that ensues is in the direction normal to the wall, with mass 
velocity v and diffusion velocity J$ for the ith species. Changes occur only with 
time t and normal distance y. 

When the usual boundary-layer simplifications are applied to the Navier- 
Stokes equations for this geometry, the tangential momentum equation is 
absent, and the normal momentum equation yields the familiar condition of 
constant pressure, p =pe ,  the pressure a t  the external edge of the boundary 
layer, i.e. in the undisturbed plasma. The over-all mass conservation for mixture 
density p and normal velocity v requires 

aP aPv -+- = 0, 
at ay 

while conservation of mass for the ith species relates its mass density pi, its dif- 
fusion velocity J$, and its mass rate of production per unit volume wi by 

@+-pi(V+&) a = wi. 
at ay 

The thermal-energy conservation is written in terms of the enthalpy h of the 
mixture as 

ah ah a 
p - +pv - = - ( - q J 7  at ay ay 

where the left side is the convection of enthalpy, and qz/ is the flux of energy 
normal to the wall. The latter has the form 

where the first term is the Fourier heat-conduction with thermal conductivity k 
and the second is the transport of energy due to mass diffusion, hi being the 
enthalpy of component i. 

A useful alternate form of the energy equation is obtained by introducing the 
component and mixture specific heats as well as the relation between h and hi 

cPi = ahi/aT, cP CcPi PJP, h Xhi PJp. (2.5) 

If these are used in equation (2.3) in order to introduce temperature derivatives, 
and (2.2) is used to eliminate the derivatives of pi, the resulting form of the 
energy equation is 

This form is the one suitable for use in frozen flow where wi = 0, or for non- 
equilibrium flow, where w, is a given function determined from the reaction 
equations. 

To these equations must be added an equation of state, expressions for the 
diffusion fluxes p i x  and thermal conductivity, and the boundary conditions. 
Assuming a catalytic wall, the latter are 

y = 0: v = 0, T = T, (given), p = PATOMS. (2.7a) 
And Y+OO: T+!& p<+pie. (2.7b) 
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For case ( l ) ,  that of a perfect unionized gas, there is only one component. 
The energy equation (2.6) with w, = = 0 and the continuity equation (2 .1)  are 
the equations to be solved. For case ( 2 ) ,  a monatomic, ionized gas in thermo- 
dynamic equilibrium, there are three components-atoms, ions and electrons, 
but, because the ions and electrons diffuse in pairs by ambipolar diffusion, the 
mixture is basically binary.? Thus we need the equation (2 .1)  of over-all mass 
conservation, the energy equation, which we take in the form (2.3) for this case, 
and the equilibrium relation between the degree of ionization and the thermo- 
dynamic state variables, which in this case is the Saha equation. Finally, in 
case (3) ,  for a monatomic, ionized gas with no gas-phase recombination (frozen), 
we need the equation (2 .1)  of over-all mass conservation, and the energy equation 
which we take in the form (2.6) with w, = 0. The mixture is still binary, so we need 
again one relation for the degree of ionization, which in this case is an equation 
(2.2) for one-species mass conservation with w, = 0. The one for the ions is con- 
venient. For all these cases, suitable selections of the boundary conditions (2 .7 )  
are used. 

The next section is devoted to specifying the thermodynamic and transport 
properties of the ionized argon mixture. 

3. Thermodynamic and transport properties 
Thermodynamic properties 

For a mixture of atoms, singly-ionized ions and electrons, the thermodynamic 
properties are simply expressed. Only a single component concentration need 
be specified, and we will use the degree of ionization, a, defined by 

a = nz/(nA+nz) ,  n = nA+nz+nE = nA+2n,, (3 .1)  

where the n’s are particle concentrations per unit volume, and the subscripts 
A ,  I ,  E refer to atoms, ions and electrons. The mass densities pi follow by intro- 
ducing the masses m, 

p = (nA +nz)mA, p I  = nzmA = up, pE = nEmE = pImEjmA. (3.2) 

The partial pressures p i  are simply proportional to n, so from (3.1) we find 

PA/p = ( l - a ) / ( l + a ) ,  = P E b  = a / ( l + a ) ,  (3.3) 

(3.4) 

while the gas law becomes 

p = nKT = p ( 1  fa)  (K/mA)T, 

with K the Boltzmann constant. 

a unit mass basis, we find 
The constant-pressure specific heat cp of all particles is taken as $ K ,  and so, on 

CpA = cpz = 5K/2m~,  c p ~  = 5K/2m,, cp  ccpi(p,/p) = CpA(l +a) .  (3.5) 

t This is an assumption which is valid provided the Debye distance is much smaller than 
the boundary-layer thickness, thus ensuring substantial charge neutrality. The sheath 
region at  the wall, where such an assumption is no longer valid, is replaced by the boundary 
conditions for a fully catalytic wall discussed above. 
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The enthalpies follow from this with the introduction of h; as the ionization 
energy per unit mass of atoms: 

} (3 .6)  
hA = cPAT, h, = c,,T+h!, hE = cpET, 

h Xh,p,/p = cPA( 1 + 01) T + ah: = cP T + ah:. 

For the equilibrium case, we also need the Saha equation relating a t o p  and T .  
The form we shall use is 

where Qdi is the electronic partition function of species i ,  and h, is Planck's 
constant. 

Transport properties 

The transport properties needed for the calculation are the thermal conductivity 
of the mixture, k, and the diffusion fluxes p,&. The diffusion terms in equations 
(2.4) and (2 .6)  can be simplified by using the zero-net-mass-diffusion-flux 
relation for the vector diffusion velocities V,, 

z~ iv ,  = P A V A  + P I V I  = 0, (3 .8)  
the ambipolar-diffusion condition V z  = VE,  and the expressions (3.2),  ( 3 4 ,  and 
(3 .6)  for the densities, specific heats, and enthalpies. The results are 

%i hi = PA& hA + P I &  hI + P E  & hE, 

= p Z & ( h Z -  hA + %3PE/PI) ,  

= + CpAT)7 ( 3 . 9 4  

X P i  & cpi = P I  b ( c p  Z - C p A  -k cpE P E / P I )  7 

= P I G C p A %  (3.9b) 

Thus only the ion-diffusion flux must be specified, which is a consequence of the 
assumption of ambipolar diffusion. 

The thermal conductivity of argon atoms has been computed by Amdur & 
Mason (1958) from 1500 to 15,000"K using the results of beam experiments for 
argon atom collisions. These calculations can be represented by a power law 

kA = 5-8 x 10-7T2 cal/cm sec OK, (3.10) 

which also represents the lower temperature values of the National Bureau of 
Standards (1955).  Although it is a few percent high between 1000 and 300OoK, 
it  gives the correct value at 300 as well as 15,000°K, and we will use it as the 
thermal conductivity of atomic argon at  all temperatures above 300 OK. 

For a completely singly ionized gas the thermal conductivity ks in the absence 
of any current flow is given by Spitzer (1956, pp. 87-88) as 

ks = 4.4 x 10-13T@/lnA1 cal/cm sec O K ,  (3.11) 

where A, is the ratio of the Debye distance to the impact parameter for goo 
deflexion, given by Spitzer (1956, p. 7 2 )  as 

A =-(-) - 2 7rnE66 KT ' = 1.24 x lo4 Tg/nb, ( 3 . 1 2 ~ )  
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Here 6 is the electronic charge, T is in OK and nE in electrons per cubic centimetre. 
For high electron density and low temperature, the Debye distance is smaller 
than the average distance between particles, n,f, and should be replaced by the 
latter in determining A, giving 

A, = 3~Ts-~nj j f  = 1800Tn,f. (3.12b) 

The limit of validity of the use of A, is A, 6 127r. For convenience in the calcula- 
tions, the log term in equation (3.11) was taken as a combination of A, and A, in 
order to provide positive values of ks which would still be correct in the limiting 
cases 

cal/cm sec OK. 
4.4 x 1 0 - 1 3 ~ 5  

k -  - tln(Af+Ag+e*) 
(3.13) 

For the mixture of atoms, ions, and electrons we will use the approximate 
mixture rule suggested by Fay (1964) 

(3.14) 

Here kj  and xi are the thermal conductivity and mole fraction of the pure com- 
ponent j, and Qii is the effective hard-sphere cross-section for a collision pair 
j and i. 

The binary diffusion coefficient Dji and the thermal conductivity for the 
monatomic component j are related to the effective hard-sphere cross- 
sections by 

Did = - 
16(ni + ni) Qji  

(3.15) 

(3.16) 

which are given, for example, by equations (10.22,2) and (10.21, 1) of Chapman 
& Cowling (1960). 

If the mixture rule (3.14) is to hold for a completely singly ionized plasma, then 
the electron and ion thermal conductivities should be chosen as 

kI(m,/mE)g = kE = (1  + 42) ks, (3.17) 

since QEE = Q I 1 .  Upon substituting these into the mixture rule, neglecting 
those Gji having the factor (mE/mA)i, and using equation (3.16) to relate QEE 
to QAA, we find for the mixture 

The ratio QAE/QAa is relatively unimportant in determining k because this 
term is small except when ct is very small. Consequently, this ratio was chosen 
to be 1-5 x 10-2 in accordance with the average values of these cross-sections in 
the temperature region of interest. To determine the ratio QAI/QAA,  we find QAA 
from equation (3.16) applied to atoms with kA from equation (3.10). For QAI, 
we use equation (3.15) for the binary diffusion coefficient DAI, which can be 
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calculated from experimental data on the drift of ions through an atomic gas. 
According to kinetic theory, D,, is related to the ratio of the drift velocity V, 
and to the electric field E by (Chapman & Cowling 1960, p. 321) 

(3.19) 

The ion temperature TI for these experiments may be taken to be that tempera- 
ture for which the mean thermal speed equals the drift velocity 

8 ~ T , / n m ,  = V i .  (3 .20)  

Using the data from experiments by Hornbeck (1951),  QAI for argon was calcu- 
lated from equations (3 .15) ,  (3.19),  and (3 .20) .  When combined with QAA this 
yields 

with T in OK. 

QAI/QAA = 1.44T0'16, (3 .21)  

We now have specified all the quantities necessary to write the thermal con- 
ductivity of the mixture k from equation (3 .18) ,  as a function of temperature 
and fraction ionized, and the physical constants of the atoms and electron. 

Turning to the mass-flux of ions due to ambipolar diffusion, we consider a 
two-component mixture of atoms and ion-electron pairs. The momentum 
equation for diffusing atoms may be written in the form: 

(3 .22)  

in which CAI = [ 8 ( m , + m A ) ~ T / n - m I m A ] ~  is the mean relative velocity of the 
colliding atoms and ions. The first factor is brackets is the momentum loss per 
atom-ion collision and the second is the total collision frequency, which is 
chosen so that the usual diffusion equation for a binary mixture (equation 
(8.41, 3 )  of Chapman & Cowling 1960) is obtained when equation (3.15) is used 
to eliminate Q,, in equation (3 .22) .  The statement is that the momentum gain 
due to pressure gradient is balanced by the momentum loss due to collisions 
with counter-diffusing ions. The electrons contribute nothing to this momentum 
balance because of their small mass. 

If QAI is eliminated from equation (3 .22)  using equation (3.15),  vA is eliminated 
by means of the zero-net-mass-diffusion-flux condition (3 .8 ) ,  and the number 
densities are replaced by a from equation (3 .1 ) ,  we find 

PI V, =   ADA I ( K T ) - ~ V P A .  

For simple diffusion the total pressure is constant, so we can differentiate the 
ratio pA/p from equation (3 .3)  to find v p A s  Use of the gas law then yields 

(3.23) 

This defines the ambipolar diffusion coefficient Dam in terms of the atom-ion 
diffusion coefficient DaI of equation (3 .19) .  D,,, is seen to be twice DAr for 
small degrees of ionization, a familiar result. For high degrees of ionization, 
Dam approaches DAT. 

For use in boundary-layer theory, Dam is replaced by the ratio of particle 
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diffusivity to thermal diffusivity, called the Lewis number. A useful definition 
in the present case is based on Dam, the atomic thermal conductivity and the 
constant-pressure specific heat per unit volume of the mixture : 

(3.24) 

The second step comes from equations (3.23), (3.2) and (3.5), while the last 
comes from eliminating DaI/kA from (3.15) and (3.16). By using the experi- 
mentally determined cross-section ratio from equation (3.21) we find 

L A  = 1*11Tp-O*" = O.255(T/1O4)-0"6, (3.25) 

Finally, in terms of L A  from (3.24), the ion-diffusion mass flux, equation (3.23), 
where T is in OK. 

becomes 
(3.26) 

where we have only written the y component, since that is all we need in the 
diffusion terms (3.9) in our equations. 

Now that the thermodynamic and transport properties are specified in terms 
of T and u, we may proceed to the solution of the boundary-layer equations. 

4. Transformed equations 
The partial differential equations and boundary conditions of 9 2, together 

with the thermodynamic and transport properties of 8 3, define the problem of 
calculating heat transfer to the wall in a hot argon plasm&. For the unionized, 
equilibrium and frozen cases considered here, the problem has a similarity 
solutiont in which the dependent variables are only a function of a single 
independent variable, which may be defined as 

The quantities denoted by the subscript 0 are reference quantities which may 
be evaluated a t  any arbitrary but constant state. In  the computations we will 
assume the reference state to be that of the undisturbed plasma external to the 
boundary layer. A set of normalized dependent variables are also defined by 

O(y) = T/T,, s(y) E a/ae. (4.2) 

With this transformation the over-all-mass-conservation equation (2.1) may 
be solved for pv, and the convective derivative operator becomes 

t We assume conditions behind the shock wave but outside the boundmy layer are 
constant in time and space, although this is not completely consistent with the effect ofthe 
boundary-layer displacement thickness which increases (negatively) with time. However, 
this approximation is the usual one always employed in first order boundary-layer theory, 
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Then we may transform the energy equation (2.3) and the energy flux (2.4), 
using equations ( 3 . 9 ~ )  and (3.26) for the diffusion term. The result is 

For equilibrium, c1 is related to 8 through the Saha equation (3.7) so da/dq can 
be related to dB/dy. Furthermore, h is also related to 8 and a by equation (3.6). 
When these are inserted in equations (4.4) and (4.5) we find 

where 

In the case of thermodynamic equilibrium, 8 is the only variable, so only equa- 
tion (4.6) need be solved, and then equation (4.7) gives the heat-transfer rate 
when evaluated at the wall 7 = 0. The boundary conditions on 8 are given in 
equations (2.7). 

For the frozen case, the transformation is applied to equations (2.2) and (2.6) 
with wi = 0. Equation (2.2) is written for ions, with (3.26) used for the diffusion 
mass Aux. In  equation (2.6) we use (3.9b) and (3.26) for the diffusion term. 
We find 

(4.9) 

The corresponding heat-flux expression is just equation (4.5). In  this case both 
8 and s are unknown, and both equations (4.9) and (4.10) must be solved, subject 
to the boundary conditions given in equations (2.7), which include the catalytic 
wall condition s = 0 at n = 0. 

The third case of interest, the unionized perfect gas, is a simple limiting case of 
either equation (4.6) or (4.10) with a = 0, and cp constant. This energy 
equation is 

(4.11) 

also subject to the 8 boundary conditions of equations (2.7). This equation can, 
of course, be integrated on a machine like the others. However, if only the wall- 
heat-transfer rate is desired, it  is simple enough to be attacked analytically, since 
kA is the power function of T indicated in equation (3.10). An integral method 
has been applied when 

kAcC T", P K  T-I, (4.12) 
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and an accurate analytical formula for wall-heat-transfer rate has been found 
(Jepson 1961, Kemp 1964). The result is 

This formula agrees with numerical integrations of equation (4.11) under the 
conditions (4.12) within t- 3 yo for 0-5 < u < 2.5 and 0 < 0, < 1. In  the present 
case of interest, v = # according to equation (3.10). 

For the solution of the equilibrium and frozen cases, numerical integration 
on a digital computer was used. The formulation of the equations for the com- 
puter is described in appendix B of Fay & Kemp (1963). 

5. Calculations, results and discussion 
Calculations have been made for argon for cases corresponding to conditions 

on the end wall of a shock tube. The initial pressure pi in the tube was 1 mm Hg, 
and the incident shock speed varied from 3 to 6mmlpsec. In  order to get the 
input data, it  was necessary to calculate conditions behind a reflected shock in 
argon. Such calculations are straightforward for argon considered as a perfect 
gas with no ionization, and the necessary input data are given in table 1, with 
Us the incident shock speed. Also given is q2/t calculated from equation (4.13), 
with k,, and v from equation (3.10). 

u* Te qJt 
(mmlpsec) p h i  ( O K )  (W/cm2) (see$ 

3 630 19,500 2.71 
4 1150 34,100 6.00 
5 1810 54,100 11-4 
6 2610 77,900 18.8 

TABLE 1. Heat transfer calculations for Ron-ionized argon (pc = 1 mm Hg). 
~~ 

For argon which ionizes behind the incident shock, a more complicated 
condition ensues. A schematic distance-time diagram is shown in figure 1. 
Behind the incident shock there is a region where the gas has not yet had time 
to ionize, region 2F. This is followed after a time interval r2 by a rapid ionization 
process, denoted by a dotted line, followed by a region 2E where the argon is in 
equilibrium behind the incident shock. The ionization process is quite fast in 
argon, and as a first approximation may be considered to take place in a sharp 
front. When the incident shock arrives at the end-wall, i t  reflects back into the 
as yet unionized argon, making a region 2F4F in which the argon is still un- 
ionized. In  this region the unionized perfect gas model is applicable. After a 
time T ~ ,  which is less than 72 because of the higher temperature and pressure, 
this gas ionizes, giving a region 2F 4E’. This ionization process sends out expan- 
sion waves, because of its large increase in density, and reduces the speed of the 
reflected shock. Further interactions occur when the reflected shock meets the 
ionization front behind the incident shock. 

The calculation of conditions at the end-wall in region 2F4E’, and later, is 
obviously very difficult. In  addition, this discussion shows that the external 
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conditions for our boundary-layer problem are not constant, so that a local- 
similarity analysis cannot be exactly applicable except in the perfect-gas region, 
2F 4F. However, we have made calculations in the frozen and equilibrium cases 
in order to compare them with experimental results available that go from the 

\\ 

Second 

4 
Distance 

FIGURE 1. Distance-time diagram for the flow at  the end-wall. 

2F 4F region into the 2F  4E' region. These heat-transfer measurements are 
described by Camac & Feinberg (1965). The conditions in region 2F4E' used 
as boundary conditions were obtained by a method described by Camac & Teare 
(1964), which approximated the distance-time diagram of figure 1 by a conical- 
flow picture. The resulting external conditions are given in table 2, together with 
the result of heat-transfer calculations based on these conditions. 

The values of q J t  given in table 1 for unionized argon and table 2 for region 
2F 4E' are plotted against shock speed in figure 2. Also presented there are the 
experimental measurements of Camac & Feinberg ( 1965). These measurements 
represent heat-transfer rates in both the 2F4F and 2F4E' regions, since the 
experimental rates did not change during the ionization process. 

The agreement of the unionized-perfect-gas calculations with the experimental 
rates is striking. The only unknown in this calculation is the thermal conductivity 
of atomic argon kA. This was taken as equation (3.10), which was based on the 
calculations of Amdur & Mason (1958) up to 15,000°K, and then used up to 
78,000 OK. The remarkable agreement with experiment can be interpreted as 
confiming this TZ dependence of kA up to the temperature limit of the experi- 
ments, which is 75,000 OK. 

Comparison of the frozen and equilibrium results with experiment in figure 2 
shows the frozen to be low by up to 40 % and the equilibrium to be low by UP 
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n 4  
u* P Te (W/cm*)(sec)* 

(mmlpsec) (atm.) (OK) a e  - 
Equil. Frozen 

2F 4E‘ 

3 0-714 11,300 0.0818 2.48 3.00 
4 1.18 12,900 0.206 4.94 4.26 
5 1.78 14,400 0.366 8.42 7.00 
6 2.52 15,800 0.559 13.1 10.6 

2F 4E 

3 0.725 11,100 0.070 2.34 2.17 
4 1.22 12,700 0.175 4.62 3.90 
5 1.84 14,100 0-315 7.94 6.33 
6 2-62 15,500 0-485 12.56 9.60 

2E 4E 

3 0.790 11,200 0.072 2.49 2.30 
4 2.04 13,400 0.217 6-73 5.66 
5 4.35 15,400 0.385 14.5 11-3 
6 7-90 17,500 0-600 26-5 20.0 

TABLE 2. Heat transfer calculations for ionized argon (pi = Imm Hg). 

3.0 3.5 4.0 4.5 5.0 5.5 6.0 
Incident shock velocity (mm/psec) 

FIGURE 2. Heat transfer rate to end-wall in argon with initial pressure p, = I mm Hg, 
for non-ionized case and for region 2F4E’. 0, experimental (Camac & Feinberg 1965); 
-, y = #in 2F4F; ---,equilibrium boundary layer in 2F4E’; --- , frozen boundary 
layer in 2F 4E’. 
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to 30 %. It is apparent that these calculations are not as precise descriptions of 
the physical situation as one would like. 

The possible sources of the discrepancy on the experimental side are discussed 
by Camac & Feinberg (1965). On the theoretical side they include, first, the use 
of only frozen and equilibrium calculations with the local similarity assumption 
during a period when the external conditions are changing from frozen to 

3.0 3.5 4.0 4.5 5.0 5.5 6.0 

Incident shock velocity (mm/psec) 

FIGURE 3. Heat-transfer rate to end-wall in argon with initial pressure pi = 1 mm Hg, 
for regions 2F 4E and 2E 4E, where the reflected shock is a simple equilibrium transition 
but the incident shock is a frozen or equilibrium transition, respectively. - , Equi- 
librium boundary layer in 2E 4E; ---, frozen boundary layer in 2E 4E; ---, equilibrium 
boundary layer in 2F4E; -----, frozen boundary layer in 2F4E. 

equilibrium. Secondly, the state of the gas at the edge of the boundary layer was 
obtained by an approximate method which may introduce some error. Thirdly, 
the theory considers only a single temperature, i.e. the temperature of the 
electrons is taken equal to that of the atoms and ions. While the ions and atoms 
reach temperature equilibrium in one collision, it takes lo5 collisions for the 
electrons to equilibrate with the heavy particles. Also, there is a plasma sheath 
at  the wall, which tends to reflect electrons and insulate them from the wall and 
its temperature level. Thus, a more accurate theoretical model should consider 
different electron and heavy temperatures, with the appropriate energy exchange 
due to collisions, the effects of the wall plasma sheath, and possible gas-phase 
electron-ion recombination. Such a model has been formulated (Camac & Kemp 
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1963) and is being studied for comparison with the results of the present investi- 
gation. This model shows that, when the temperatures are equal, the plasma 
sheath has a negligible effect on heat transfer, thus verifying the initial assump- 
tion made in the present investigation. 

Considering all these possible sources of error for the present simple theoretical 
model, it  is felt that the frozen and equilibrium calculations and the measure- 
ments show a substantial amount of agreement. 

For comparison purposes, calculations have also been made using as outer 
boundary conditions the conditions at  the end-wall when the incident shock is 
a frozen transition but the reflected shock is a simple equilibrium transition 
(2F 4E) and when both shocks are simple equilibrium transitions (2E 4E). The 
frozen- and equilibrium-boundary-layer heat-transfer for each of these two 
external conditions is shown in figure 3, and tabulated in table 2 as 2F 4E and 
2E4E. The substantial spread in the results indicates the importance of the 
chemical behaviour not only in the boundary layer but also in the inviscid flow. 
Comparison with figure 2 shows that the 2F 4E’ curves are only slightly above 
the 2F4E curves, and that the non-ionized argon curve lies very close to the 
2E 4E frozen-boundary-layer curve. The 2E 4E equilibrium-boundary-layer 
curve is above all the experimental points except a few below V, = 4mm/psec. 

This research was sponsored by the Ballistic Systems Division of the Air 
Force Systems Command under contract no. AF 04( 694)-33. Mr William Nelson 
performed the machine calculations. Dr Morton Camac contributed to many 
fruitful discussions. 
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